Penerapan Metode Algoritma C4.5 Untuk Prediksi Mahaiswa Non Aktif

Irmayansyah Irmayansyah - [ https://orcid.org/0000-0003-2410-5299 ]
Erisya Lastrini

Abstract

The problem of non-active students is something to be aware of because it can affect the quality of education and result in a decrease in campus financial income. If the problem of inactive students can be predicted faster, then the management can prevent and anticipate early. To solve the problem, c4.5 algorithm is applied to the prediction of non-active students in order to produce patterns based on classification results. By using IPS, Attendance, Annual Income, cost sources, and payment status. This is done to monitor students who are potentially non- active so as to anticipating for the decline of active students. In this study, feasibility test has been conducted, with a feasibility value of 87.50%, and also has been conducted accuracy test using confussion matrix formula with 81% accuracy result.

Keywords

Prediction; Non-Active Student; C4.5 Algorithm; Classification; feasibility.

References

Arikunto, S. (2006). Prosedur Penelitian Suatu Tindakan Praktik. Jakarta: Rineka Cipta.

Andriani, A. (2012). Penerapan Algoritma C4.5 Pada Program Klasifikasi Mahasiswa Dropout. Seminar Nasional Matematika 2012

Eko Prasetyo. (2013). Data Mining : Konsep Dan Aplikasi Menggunakan Matlab. In Journal of Chemical Information and Modeling.

F. Gorunescu, Data Mining Concept, Models and Techniques. Verlag Berlin Heidelberg: Springer, 2011.

Hastuti, K. (2012). Analisis komparasi algoritma klasifikasi data mining untuk prediksi mahasiswa non aktif. Seminar Nasional Teknologi Informasi & Komunikasi Terapan.

Himawan, D. (2011). Aplikasi Data Mining Menggunakan Algoritma ID3 Untuk Mengklasifikasi Kelulusan Mahasiswa Pada Universitas Dian Nuswantoro Semarang. Fakultas Ilmu Komputer.

Kusrini and E. T. Luthfi, Algoritma Data Mining. Yogyakarta: Andi Offset, 2009

Larose, D. T. (2005). Discovering Knowledge in Data: An Introduction to Data Mining. In Discovering Knowledge in Data: An Introduction to Data Mining.

Prasetyo, Eko. (2012). Data Mining Konsep dan Aplikasi Menggunakan Matlab. Yogyakarta : Andi.

Rosa A.S dan M. Shalahudin. (2011). Rekayasa Perangkat Lunak (Terstruktur & Berorientasi Objek). Politeknik Negri Sriwijaya.

Sugiyono. (2019). Metode Penelitian Kuantitatif, Kualitatif dan R & D.Bandung:Alfabeta. Metode Penelitian Kuantitatif, Kualitatif Dan R & D.Bandung:Alfabeta

Turban, E., dkk, 2001, Decicion Support Systems and Intelligent Systems, Andi Offset, Yogyakarta

Untari, D. (2014). Data Mining untuk Menganalisa Prediksi Mahasiswa Berpotensi Non-Aktif Menggunakan Metode Decision Tree C4.5. Fakultas Ilmu Komputer Universitas Dian Nuswantoro.

Van Blerkom, M. L. (2009). Measurement and statistics for teachers. In Measurement and Statistics for Teachers. https://doi.org/10.4324/9781315464770

Article metrics

Abstract views : 154 | views : 90

Refbacks

  • There are currently no refbacks.